Sunday, 15 November 2015

Bubble sort




Bubble sort

Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted. The algorithm, which is a comparison sort, is named for the way smaller elements "bubble" to the top of the list. Although the algorithm is simple, it is too slow and impractical for most problems even when compared to insertion sort.[1] It can be practical if the input is usually in sort order but may occasionally have some out-of-order elements nearly in position.

Analysis

An example of bubble sort. Starting from the beginning of the list, compare every adjacent pair, swap their position if they are not in the right order (the latter one is smaller than the former one). After each iteration, one less element (the last one) is needed to be compared until there are no more elements left to be compared.

Performance

Bubble sort has worst-case and average complexity both О(n2), where n is the number of items being sorted. There exist many sorting algorithms with substantially better worst-case or average complexity of O(n log n). Even other О(n2) sorting algorithms, such as insertion sort, tend to have better performance than bubble sort. Therefore, bubble sort is not a practical sorting algorithm when n is large.

Rabbits and turtles

The positions of the elements in bubble sort will play a large part in determining its performance. Large elements at the beginning of the list do not pose a problem, as they are quickly swapped. Small elements towards the end, however, move to the beginning extremely slowly. This has led to these types of elements being named rabbits and turtles, respectively, after the characters in Aesop's fable of The Tortoise and the Hare.
Various efforts have been made to eliminate turtles to improve upon the speed of bubble sort. Cocktail sort is a bi-directional bubble sort that goes from beginning to end, and then reverses itself, going end to beginning. It can move turtles fairly well, but it retains O(n2) worst-case complexity. Comb sort compares elements separated by large gaps, and can move turtles extremely quickly before proceeding to smaller and smaller gaps to smooth out the list. Its average speed is comparable to faster algorithms like quicksort.

Rabbits and turtles

The positions of the elements in bubble sort will play a large part in determining its performance. Large elements at the beginning of the list do not pose a problem, as they are quickly swapped. Small elements towards the end, however, move to the beginning extremely slowly. This has led to these types of elements being named rabbits and turtles, respectively, after the characters in Aesop's fable of The Tortoise and the Hare.
Various efforts have been made to eliminate turtles to improve upon the speed of bubble sort. Cocktail sort is a bi-directional bubble sort that goes from beginning to end, and then reverses itself, going end to beginning. It can move turtles fairly well, but it retains O(n2) worst-case complexity. Comb sort compares elements separated by large gaps, and can move turtles extremely quickly before proceeding to smaller and smaller gaps to smooth out the list. Its average speed is comparable to faster algorithms like quicksort.

Pseudocode implementation


procedure bubbleSort( A : list of sortable items )
   n = length(A)
   repeat
     swapped = false
     for i = 1 to n-1 inclusive do
       /* if this pair is out of order */
       if A[i-1] > A[i] then
         /* swap them and remember something changed */
         swap( A[i-1], A[i] )
         swapped = true
       end if
     end for
   until not swapped
end procedure










Java Implementation
int a[]={9,8,7,6,5,4,3,2,1,0}
for(int i=0;i<a.length;i++){
        for(int j=0;j<a.length;j++){
               if(a[j>a[i]]){
                     int temp = a[i];
                      a[i]=a[j];
                      a[j]=temp;
                     }
                }
}

Optimizing bubble sort

The bubble sort algorithm can be easily optimized by observing that the n-th pass finds the n-th largest element and puts it into its final place. So, the inner loop can avoid looking at the last n-1 items when running for the n-th time:


No comments:

Post a Comment